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1- INTRÜDULTIOlJo Since its inception integer linear programming 

has, paradoxicallyj bean a source of both promise and disappointment= Pro- 

mise because there are manifold and compeliing opportunities for its appli- 

cation; disappointment because it has made only the moot dubious progress 

in spite of these opportunities., 

in contrast, the remarkable growth of traditional linear programming 

is well known« The question arises as to what causes this difference,, 

Harold Kuhn and idchard Wuandt cite three factors to account for the success 

of linear programming., l/ They are (a) its flexibility and wide range of 

application, (b) the parallel development of large electronic computers,, and 

(c) the discovery of the simplex method, an efficient algorithm which solves 

problems at a reasonable cost in time. Of these factory, the one which seems 

most nearly to explain the contrast between the ascisnsion of traditional 

lineai- programming and the lagging debut of its integer relative is the 

last- There are no integer programming algorithms with the high efficiency 

of the simplex method. 

The difficulties with the integer algorithms are of two distinct 

types.. First, there are many problems which appear wholly impervious to 

themE though the algorithms are theoretically assured of finding a solution 

second, the algorithms give fickle performances even in solving those pro- 

blems which are more tractable., For this latter category of problems th« 

success of the integer algorithms depends heavily on the sequence of ie'\eci 

ing pivotal constraints» Frequently a problem which requires an inordinate 

number of pivots using one sequence will yield after a fraction of thet 

number to another.. 

It is sometimes possible,, by examining an efficient pivot uequtncs 

for a specific problem,: to infer a general rule which will work weil on the 



problem investigated.. Unfortunately., there seeing to be no existing rule 

which is good for all problems., nor which makes any appreciable inroad into 

the large region of problems which uniformly resist the efforts of the best 

alternate approache;;. 

The initial purpose of this study was to seek a strategy of pivot 

selection that would abandon trie profligacy of existing rules„ The algorithm 

at the focus of our investigations was uo be, and has principally been, the 

all-dntegsr integer progratnming algorithm proposed by Ralph Gomory in -'anuaiy 

1960, 2/ However, as our work has progressed.„ we have developed two supplo- 

msntary techniques, based on the simplex method, which may be applied Inde- 

pendently of any specific lule of choice,, One of theje, the New Origin 

Technique (NOT), described in Section ^B, has proved Sufficiently promising 

to earn a distinKuished position among the strategies! presented in this re---- w 
port» Thus we have,cone to attack the tardiness of "Che integer programming 

algoritlwij in two -.-.'ays: by developing and testing rules for selecting pivotal 

constraints, and by introducing two methods for boosting tha problem toward 

solution before one pivot rules are applied,, IA 

:-' ^liijii^J-^rfi^R.A^^'l p^J^MS^-AfiSislIM- Oowoiy's ail 

Integer integer prograiaming algorithm raaemblea the simplex in seve.ral ways , 

'ihe distinguishing, feature of the algoritlim is the creation of a transitory 

•wnstraint whi.-;!i is used for pivoting and then discarded- Unrtsrlying this 

feature is the principle that each constraint in the all integer tableau 

Implies the existence of a special set of secondary conf.traints. The second- 

ary constraints must all bs satisfied by any integer solution to the original 

problem, and are eligible for pivoting if and only if the constraint which 

:;ired them is eligible. The process of pivot selection consists in ch :osing 

one of the eligible constraints from the tableau, and then locating the 



unique secondary constraint which satisfies the following t^vo properties: 

(l) it has a pivot element of -Ij and (2) of those constraints sharing 

property one„ it causes the largest decrease in the objective function, 

The "new pivotal constraint" is temporarily annexed to the tableau so that 

the pivot operation may be carried out on it» Afterwards it is discarded 5 

sjid the process repeated. 

In Gomory's tableau the constraints correspond to column vectors-, 

The new pivotal constraint is uniquely determined by the eligible constraint 

from which it is derived. Hence we will speak of pivoting on a column in 

the permanent tableau^ though the actual pivot operation is carried out on 

the derivative column,, For the convenience of the reader0 Gomory's algorithm 

is outlined in its entirety in Appendix A-,., 

3- PIVOT oELi&TlOiM. RULI^ A column in Gomory's tableau is eligible 

for pivoting whenever its bottom row element is negative., hence the choice 

of pivots may be referred to as a choice among negative, indicators,. There 

aye clearly many strategies by which such choices could, be wade,, Though 

some limited value might come from testing rules that have been fabricated 

arbitrarilyj we have chosen to restrict ourselves to rules for which WG 

could give some intuitive, practical or theoretical justification, 

^-    First Meffitive Indicotora --The first negative indictdr rule 

says to select the eligible column with the least index. In his paper on 

all integer programming Gomory cites this rule as one for which a finite 

number of pivots la guaranteed. Its advantage is its extreme simplicityj 

the computer wastes no time between pi.vot operations.. Compared to any 

rule which requires the same number of pivotsj, the first negative indicato 

rule must prove at least as efficient 

®"    Andorn Pivot oeiecticri,.- Ths name of this ruls is  its dösariplionj 

it simply directs that a negative indicator be chosen at random,. Like the 



first negative indicator rule, "the random rule works rapidly,, Iweover, it 

is a normative rule: hopefully we should expect any truly effective rule to 

do as iV&lla Finally s the random rule naken it possible to get an idea of tha 

distribution of the number of pivots required to reach solution by making 

successive solution attempts on a single problem with a variety of random 

number bases.: 

^• gandoa itestart Rule—-Our early experimentation with the random 

pivot choice rule showed us that the variation in the number of pivots re- 

quired to solve even the more manageable problems by Gomory's algorithm was 

exceedingly large.. Small probleins were almost as notorious in this respect, 

as larger ones«    A six variable six inequality problem had to be taken off 

the computer unsolved after 5s60v) pivots using one random number ba;ie, yet 

was solved in less than 40 pivots using another. The thought naturally 

arises that a program for arresting work on a problem after a pre-establiRhod 

number of pivots, and then starting anew, might pay off in more consistent 

results,. Any stop rule at these early stages of expsrimontation must be 

rather tentative and arbitrary, and part of our efforts in this area have 

accordingly been to find a guide by which such a mla could be set,, 

D, Random Boost kule-.-'The random boost rule is an attempt to make 

use of information which ths Random Restart Kule passes by.. Each try for 

a solution with Gomory's algorithm establishes a lower bound to the ob- 

jective function, 'The random boost rule eJnbodies this lower bound in a new 

constraint which is pivoted on and satiafied before all others are considered- 

Once the objective function attains the lower bound of the previous solution 

atteii.pt, the algorithm proceeds for a specified number of pivots and then 

passes along a possibly new bound to the next attempt. 

There is conaiderahlü similivity bet^x^n this rule and the New Con- 

straint Technique in Section 4A.  For an elRboraiion of tha mechanics of the 

procedure see the d.ls^usoior1 "-f the .latter 
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E" •^■odffium Frequency. ^il,,;ij)le ixiile.—The hBoämum Frequency iiliglbie 

Imle iü to select that constraint for pivot which *jaa most frequently elxgibie 

in the p^st,. Its use was suggested by experience in hand te;jtin/j Gomory's 

algorithins where it was found that an axcessive number of pivots .vas often 

required to reach a solution when avoiding a constraint consistently eligible. 

F" Cardinal Learning I'ivot Hu.le,----Tliis rule and the next, the ordinal 

learning pivot rale, take a new direction in pivot, choice strategies» They 

are based on the psychological model of reinforcement learning, according to 

which the organism can be induced to acquire a systematic pattern of behavior 

by rewarding certain responses and punishing others, A formal structure of 

multiple-choice situations has been developed--2/ which has already been applied 

out-side psychology by Fischer and Thompson in the construction of job shop 

scheduling rules.- The present attempt is to extend the trjode^. to the process 

of pivot selection in integer programiaingo 

The mathematical model of reinforcement learning posits that the or- 

ganism is endowed with a probability vector describing the likelihood with 

which ha wij.l select each of a set of alternatives p.-ut before him« The choice 

cf an alternative which meets rfith reward produces a change in the prübabil'lly 

vector which increases the chances that the alternative will be chosen again 

Similarly,, a punished alternative results in a decreased likelihood that it 

;-;ill be chosen again» 

The cardinal learning pivot rule is designed in this faahion to reward 

and punish good and bad pivot choices... A "good" pivot choice is defined to 

be one which produces a relatively large increase in the objective function, 

■; "bad" choice, similarly, implies a ':sf:iail" increase,, In the routine wt; '■  • 

used, a performance record is kept for each column in the tableau,, measuriru* 

ohe mean contribution to the objective! function for which that column WJS re- 

sponsible O (Other criteria of performance aro of course possible: E'o:- iustH;ir,e 

the maximum objective functior change could be used, instead of t'r.f .-rvnr-a'R. c •- 



the fractional change substituted for the absolute,, at a more refiiiQd level, 

the probability weights aäsigned to the choice of comma ii.ight be based on 

the trend of their performance, higher priority c0inü to a column whose per- 

fomance is steadily improving than to one whose performance is deteriorating. 

An additional refinement would be to consider columns in conjuntion, gauging 

the relative merits of alternative cycles of pivot choice,,) 

The particular version we programmed for the computer initially seg - 

rebates the eligible columns into thrse groups: (a) the colunns which have been 

chosen for pivoting in the past, (b) those columns which are presently 

aiigible for pivoting, and also members of the first group, (c) those 

culumny which are presently eligible for pivoting, but which are not 

members of the first group,, 

Associated with each column in group (a) is the information telling 

the total objective function change due to pivoting .dth that column,,- and 

the number of times which the column was used for pivoting,, From this the 

averaje objective function change due to choosing that column for pivot is 

computed,, and then squared :ie  use the s .uares rather than the means them- 

selves in determining the probability with which each eligible column is to 

be selected in order to accentuate the difference in weights assigned to 

columaa with rood and bad. performance histories,- The probability weight 

assigned to a member of group (b) is simply the squared value for which it 

:i.a responsible.. Each nombsr of group U)., on the other hand, receives the 

same probability weight.« which is equal to the mean of the squares associated 

with group (a)., 

This rule is called the cardinal rule because each column which has 

previously been pivoted on is always assigned a weight determined by its indi- 

vidual history; for example,, column number 7 will be considered for pivoting 

according to ita own past performance, rather than on the fact that, from left 

Lo right in the tableau, it is at present the third of oho columns which are 

ciipiblc 



1c represent the rule preciudly,, let a, b,. and c denote the number of 

columns ,.n la}, ih), i.nd (c) s  respectively.. The term m. will denote the mean 

objective; function che.öge for which colvxm i is responsible, and the symbol X 

,;i.L.L be '.wed to denote the set of all subscripts i for which column i is in (x) 

Then the probability p to be aasi^ned to selecting the eligible column k for 

pivot ma/ be repreyented ay follows, 

1  If k£B: 

p, = m.'"'   ( /-«  m.  + (c/a) 2l» m"; 
k  k  . -. „ i     '     ] 

i f.  3 

1L If ■< c ^ • 

Pi, ''"  ^ Li rr'.- V ^s «here k 

j.ri/i -• 

Ls the üenomir'.ütor in 1 above, 
K-A 

^" Ordinal j-,Mi.rru,n;; ri-yot jatle." '^1^3 ru-!-s? Ü'^13 the cardinal ruleä 

attempts to encourage u,ooü  choices with reward, and diucouxa^e bad choices 

with punishment (or "ns^ative" reward),, The veliicls of reward., positive and 

negative, is a successively redefined vector which expresses the probability 

with which each column will be chosen for pivot at any particular stage of 

the algorithm,, Eligibility acts as a restrictive operator which automatically 

assigns -/.aro probability to those columns which do not have negative indicatorsj 

and calls for the ;jdjustiient of the other probabilities accordingly,, The 

ordinal rule differs from tlie cardinal in that the probability assigned to 

selecting a paiticular column for pivot is not dependent solely upon its own 

historyj but ufon its ordinal position among the eligible colurns in the 

tableau. That is, y.e v.iil be more interested in the fact that a coiurn is the 

third from the left of those .«hich are eligible, rather than its precise index 

in the tableau., 

(•.3 it is true of the cardinal rule, there are a number of ways in which 

the ordinal nüc rd ;ht be formulated  An intuitive version would be to estab- 

lish an "ordinal probability weight vector" containin;; a number of components 

e-i^ai i:   soiivi ;u:tir .; of the numb« r of coJ.umns. and kee;. an "ordina] history" 



for that vector independont of the performance recorcb of the individual 

coluiKris ■ 

AS an illustrat Loßj If the tableau had twelve columnSj, the ordinal 

vjctoi1 sixty components, and five columna were eligible for pivoting,,, then 

the probability weight to be attached to the eligible column riith the least 

index would be equal to the sum of the first twelve components of the ordinal 

vectorf the probability ..eirht for the column ;dth the next, highest index the 

sum of tho next twelve compon^nta;, and so on. 

When the pivot jas exacutedj the result would be recorded by maintaining 

two supplementary vectorsj one to keep track of the objective function chai.jesj 

and the other to keep track of the number of pivots,, if the third of the five 

eligible columns was selected, the objective function change would be added to 

each of the amounts in columns 25 through 36 in the first supplementary vector, 

and in the second supplementary vector the same columns would be incremented 

by one,. In this wsy a form of average objective function change could be 

computed to provide the probability v;eiüht:3 to be inserted in the ordinal pro- 

bability weight vector,. 

Tho version which we used mighv, bo called a hybrid ordinal rule in the 

sense that the öuppleEantarj vectors are designed to associate each column 

with its ovm history-. The ordinal weight vector itself, however., works as in 

the preceding illustration,  For examplsv again suppose there were twelve 

cclunms in the tableau; five of which were eligible., In this case the ordinal 

vector would have just twelve components; the same as the number of columns in 

the tableau, Each component would be equal to the (squared) mean objective 

function change due to pivoting on the corresponding column , columns not pre- 

viously pivoted on treated the same as in the cardinal learning routine,. Then 

the probability weight to be assigned to the first eligible column would be 

equal to tie sum of the first two and two fifths corrxMienta, the probability 

weight for the second eligible column e ual to the sum of the next two and two 

fifthj cimponents.. etc.. 



To represent the rule precisely,, we use the notation used to describe 

the cardinal rule« In addition we define (d) to be the set of all columns,, 

(e) to be the set (d) - (a), and (f) to be the set union of (b.l and (c), 

u'e let v, = m. if if Bs  and v. = ( /  m.'Va if i £ K. Let j^ = min(j: j £ F),. 

Then Ist '' be defined: if j £■ F «■ j*, then j" = k ^ F, such that k< j, andiU< ja 

i£ F, then i^ k-  Finally, define q.„ ~ igt (d/(b+c) ), r.„ - d/(b+c] 

Then the probability p, to be assigned to choosing the eligible column k for 

pivet nay be represented: 

I» If k == j*: 

qj*. 

^ 

II„ If k / j*: 

He 

\    ^  [(1 * V' (va1 „H-^  
+- e  ,. ¥i  + "k \ +1)/ 

i=qk.+2 
vi 

j t E 

»vhere r, = q... + r,,, + r. 
k  ^-j*   j*   k      k':  K   » ^k1 

and g, = int ( q... + r.,, + r, , - 1} 
.k  ——   j-1-   2*       K' 

H,. Largest Objective Function Charta »«■-The name of this rule is laigoly 

self-explanatoryo rfe learned .-jhile vjorking with problems simple enough to be 

solved by hand that we often got close to the minimum number of pivots by 

choosing the columns which individually produced the largest objective function 

changes» In consequence we decided to test the rule on the computer with more 

complex problems . 

because of the fairly extensive computation needed to apply this rule,. 

It must result in a fairly small number of pivots to compare favorably wxt.!, 

say, either the least index rule or the random choics rule,, In fact, in the 

order we've presented therr-j the pivot, rules begin with tha on.s r-.cu:irjn-; the 

least amount of computer lime on any given pivot and extend Lo the one roquirinr 

the most* If all are to compare equally well in respect to the •i :;i.a ti.'re 



rtqr.i.rod to solve problems, the later rulas mv:t result on the average in 

fr.>"j>   i.i::> : ::.k:\n th- u-rü^., «-.es. 

''        ai^l/.^ii'^Jir-)-J'^liM^Syji.'^.    '''-'' ü'-'i'Plfei'u-nis.rj' tecariiqiiy,1:- ware 

jvo.lc^.'id ■l*1. ari att.a,:i;;l  to ^t a "h./i-i statt" with this 'yjoplty: bsfcro apjl; '.. 

ODn'.'.iy's i'.U il:i'3/_t,;, .'■.Igorithiu.     v/e fslt that there were two reasons that might 

m^b: auch an alter.]: 1:  'xrtl.whJ.le.     d''    ..'.3 probleni-j get more dirficult,, the 

;vmbfr cl' pivot:;   r-:.jU^Jod by the 3:luL'i.ti\ ::;:jtha'i coapc-J/a more .'fid r.ore  ■..''■;•■• v!y 

.v.;.t'i t.'u: .■iU.'iibe.i; va-ubrfd by the all integer algoru-hi/ij   {?) the bi'csi from tho 

fl'.;ji;.lex liicihod,   ,oiü.u possibly simplify ihe problem so lh-;t. e..;po:Ji5rt rulee of 

viioice r.'ould aubsequentiy 'jork ;.3 v;oll as wore sophiyticeted o;'i-3;;. Ciitbin^ 

down the li;.e censumed in each pivot operation. 

1 '•. 

ino.'ifc easilj" u-,i:d pit^i'.:; of buiorfiiatio , .y.vea bty th« simplex a.^yoj ithri ia tba 

va.lut- of Hit-, ob.iaciiva fuiction      ..liatev«!' thin ■value is for the fractional 

solution., we know tinb.  the  valua für  tte integer solution (in the ifinimum 

problerr.) tauet bs creator thai or equrd to it.     The UCT^ liko the bjndom 

Bcxjst Ku.i-u    involves the creation of a new constraint sxpressinr, this in ■ 

equality,  und which i.s than annyxed to the regular intogor pm^rarümin^ tableau 

The initial pivots .viih Gofflory's alPorlt.lHD are carried oat en the new con- 

straint until it IE aatiafied, after viilch  it may be discarded (it can never 

be violated) -and th» probJ.iin revort:; to its usual fora     The motivation for 

this approach wt.s  tba extv^c-tation that v.l.} the niünber of pivots required to 

satisfy the new constraint would be few,, and (2) advancing the objoctivs 

function clojer to the solution vicinity may result in fm-ier pivots being 

nesded thereaftejr 

The NOT can be represented formally as follows«    '.'e refer to the 

standard form of the ndnimization problenu    "iidninlze wb + b.« subject to 

wA - c and w - ü,"    The new constraint is given by wb - b0 1-Ai   by* .<hure w 

is the Simplex solution vector.- 



n 
One apparent advantage of the NOT, aside from its simplicity^ is that 

the jff'or-t put latci the siniplex algorithm is never "lost"—no matter what the 

form of the problem,, there is always sufficient information to form the new 

constraint ,- 

B" The, '"ew "ri^in .Technique (WOT) o--»The WOT is the most effective of 

the strategies in this report. It has been able to solve 62% more eight 

variable eight inequality problams within a 400 pivot cutoff limit than the 

second best rule tested,, and in general requires from 40$ to 60^ fewer pivots 

to solve thoss problems which the other methods ^ere able to solva within the 

cutoff limitr The HOT uses the simplex algorithms and in particular information 

obtained from a tableau produced ut some stage of the algorithm, to give 

starting values to the variables before applying Gomory"s algorithm- Implicitly,) 

Gomory's algorithm normally takes the starting values for all the w. to be 

zero,. To express the condition that some of the variables begin at other than 

a zero value, we state the following Ismma* 

Waaialn Givsi any vector w $  if w belongs to the solution set of the 

problem "minimize wb ~- b t w b, subject to wA & c - w A and w > - w ," then thar« 

is s v.1*- In the solution set of the standard problam "minimiae wb + b „ subject 

. 10 
to wA *c and w 'SO,'1 so that vr" "■ w + w , and conversely» 

From the hypoU-es.ia, w A '--c - A A and w * -w „ hence (w + w )A *c 

and (w r w ) - Q; so that w I- w is a feasible solution of the standard 

protlen,. oince w minimizes wb + b + w b == (w + w )b l- b^, the vector 

1     Q 
(w~ •*" w ) also obviously minimises the function wb + b^    The converse 

follows by considering the vector (w* - w )» 

Q 
Customarily, of course, w is the zero vectorr, In what follows we will 

attempt to compute a. w some of whose components are possibly other than zero« 

..e will refer to this computed w as the new origin,. The justification for 

the NOT is the assumption that a ^ocd choice of an initial w would reduce the 

number of pivots required to reach a solution with Gomory's algorithm» In the 



extriäJ/.e CöIU,  if w wore an integer solution, no pivota would be required,, 

However; a baa r-holce of w would mean  that the correct answer could not be 

obtained. 

Two impositions must be placed upon the new origin if a correct sol- 

ution is to be obtained with the all integer algorithm» We embody these in 

Leffaa^gt To insure that Gomory'a algorithm will obtain a solution 

\i~ [1,0  the first problem in Lenaa 1) 30 that (w4' + w ) minimizes the standard 

problem (i) the components of w must ail be integer, and (ii) each com- 

ponont of w must be leas than or equal to the corresponding component of w*„ 

If (i) were not true,, the constraints w* -w would not be, permissible 

in ths all integer tableau« ./e note that these constraints in the new problem 

are aot to be coupled with the constraints w £  0, but replace them,, 

To s«e the validity of (ii), we observe that in. transforming the standard 

problem into one with the form "ninimiaa wb + b + w b, subject to 

0. 0 
vvA-So - w A. wil-w ?" tlie sar.e result is achieved, as by first adding the 

constraint3 w.£w. to the standard problenij pivoting on them before all 

cthsrsa and then ignoring them., Hence if it is false in the solution to 

0 
the standard problem that w.^.^w. for some L then the solution obtained .1 ^  i        ' 

by Gomory's algorithm will be wrong unless the ignored constraint is viol- 

ated in the proper degree during ths course of pivoting.. 

Using information obtained from the simplex solution of the linear 

programming problem, a new origin vector can be derived from any one of the 

simplex tableaus. In order to describe ths ensuing derivations straight- 

forwardlyj it is convenient at this point to refer to a form of the simplex 

algorithm which solves the minimization problem directly rather than as the 

dual of the maximum,. 
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'..'d will call the standard representation of the problem—minimize 

.■,b + b0 subject to waic and wi:0p —Formulation 1. The initial tableau 

for the version of the simplex algorithm which solves this standard mini- 

misation problem directly in  shown in (a) below,, 

Those columna in the tableau (a) which are eligible for pivoting are 

negative in the -c vector» The pivot element is chosen from among the nega- 

tive entries hi  the sslectod column so that the rows of the tableau will re- 

main lexicographically positive after the pivot,.-. 

For additional simplicity we denote the tableau matrix consisting of 

-A and the identiy matrix I by the single letter A, replace b and 0 vector 

by b alone, replace -c by c, and extend the w vector so that it includes the 

slack variables.. The problem can then bs rewirtten: minimize wb + bn subject 

to wA. = Cj. w2üj as represented by the tableau (b)„ V.'e shall henceforth 

refer to this as Formulation II» 

The simplex algorithm is a recursive transformation which changes each 

statement of the problem into an equivalent statement, summarized by the 

subsequent tableau, with the s<:u-ne solution set as the originale Hence 

Fomulatlon II. is perfectly general,, and (b) i..ay represent any of the 

a implex tab1eaus. 

fa) 

t -A 

Ö 1 

\ -c J 

(b) 

e wi ill abide by the convention that b ' denotes the value of bn in the 0 

firuv idu.plex tableau, Since b ' is the (possibly) fractional solution value 

of the function wb + bn found by the simplex algorithm the integer variable 

solution value of wb + b- raust be greater than or equal to b • rounded upward* 

I'sln/; the notation \x)to denote the smallest integer greater than or e^ual 

i,o x, uc  :aay state; 
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J..ero.ma__2.-, Tha constraining equation 

(1) wb- <b0').. b^p 

is true for some integer p- 0 for the integer problemj where b and b refer 

to the values from any simplex tableau,, as indicated in Formulation IIo 

(The .leffiina amst also be true,, of course, of Formvulation I,} 

The proof follov/s from the foregoing remarks, since without requiring 

; j 

that the variables be integral, w b = b' - b , «here w/ is the simplex 

solution vector» 
P 

'.i's now proceed to the main derivation of the new origin vector w 0 

By Formulation IIP each constraint from a given simplex tableau can 

be written 

(2)SakWk = Co 

Let i be defined by a./b. = inin (a./b, ) for all k such that not both a, aid ^ x i      K   k k 

b, are zero  By convention a./O - -»«if a. /0 and a,/0 ~ £ if a, > 0a k ^ V! k ^     k   *   k ' 

it is assumed that i is unique.., 

Let H = nrfja (aj/b-, ) for all k /- i, excluding a. /b ~ 0/0a -.'e immediately 

state the .folJ.ovd.ng lermna, 

Lemma 4-, Provided H f J'  ,  (i) Kb, - a, £0 if k/ i: (ii) Hb - a, >0<. 

V.'e note that part (i) holds trivially if a, and b. are both aero  If we 
' ■'    k    k 

assume otherwise, the first part then follows from the fact that H£ a,/b, if 
k'   k 

k -r i.     By hypothesis H  \ <f y and since i is required to be unique (, H f •»/'o 

Thus b,   T 0 for all k such that a,   f 0.     But by the simplex algorithm» 
k ' k ' 

b,5.0 for all kB hence b, > Ü for all relevant ks Hb, ^(aj/b, )  b,   - a, „ and 

Hb   - a, "^O.    Similarly, Hb.   - a. >0 follows from the fact that a./b. < H,. 
k       k"- il ii 

»v'e will use Lemma k  to derive a permissible value for the component w 

of the new origin vector w , Hewriting equation (l) as a sum of variables and 

multiplying both sides we obtain 
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i3> fj^'by = Hß, where E is defined by B =<(b "/» ■ b + p. 

äubtacting !2) rxorr (3) gives 

C w, (Hb. - a, ) = HB »■ c 
/-  k  k  k 

..s transpose for k I  is and invoke Lemma 4 to obtain 

(Kb.  a.) w. = HB - c - 1      w, (lib, - a, )> HB ■ c-, 
ill , /.  k  k  k kk    K 

Again, sinee Hb.. - a, >0„ 
1  I 

(4) v:, >«B - c)/(Hb. - a.) 

0 
ron which we can inx'sr a permissible value for w, o If we further dafine j 

-I bj -a./b, « rain (--a./b, } for all k,. and Q = min (-^/b, ) for all k 7^ j 

(again excluding a /b. = O/o) we 
K  K 

part of which we hava just proved 

(again e^ciuding a /b. = O/o) we can state the following theorem,; the firat 

Theoren.- 1., whenever ths following expressions are well-defined and greater 

than or equal to aero,, permissible values for the components w. and w. of 

n 
the new origin vector v'are given by 

(i)  w.0 = /(HB  c)/(Hb. - a.)) 
1    \        1   1 •' 

(ii)  w.& = (ii/h.^  if H - ^ 
i   >  1' 

(ill) w.0-<CtB + c> 

Part (ii.) of ths theorau follows from the fact that if H -'S,  then 

b, ■■ 0 for all k ;/ i3 Hsnce equation (l) reduces to w.b, ^/b 'y ~b(.  + p 

and for the strictly correct value fur p., w. = B/b., '..;e write this in the 

form (ii) since, as we will show later, it may suffice to give p a value 

slightly lower than the one required to make equation (1) an identity for 

the all integer solution vector w = W*0 The case for b. = 0 is omitted since 
1 

b = 0 for all k, which makes the objective "mtnifidae wb + b " meaningless. 

For this reason ;.i --«"»^irj ainc excluded from consideration., The derivation of 

(ill) begins with % (a )w = -c in place of equation (2).  The remainder of 

the derivation is a duplication of that of (l)P with $s j, -a^,, and -c sub- 

sit^«! fcr i!s i- avt .uid c  Thus '.m get v,.>:\-ß ^c)/  (vb + a ) aa the 
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r.u:rni,-..;y,'.;:-t. rf (A.'.  Hc'eve;-,, frorj the knowledge that each constraint contains 

a bs.ij.', viuic.ble, .•*.; '.'aii oouclude that ij!in(->a,/b, )= -l/O, and .<b, + a. =1. 

Part (iii) ■ oliov/s and the proof of Theorem 1 is complete.- ie remark that any 

comi-onent OJ1
 the new origii! vector w which is left undetermined by the 

e<r,v< ti.cr.s o" Theorem 1 :1s automatical!}• assign id. the valiis zero,, If a component 

of i-, it detennijied to have different r.on»zero values by several constraints, 

it. in reaaoiiable to asairn it the largest of the values.. 

For a i'iv'tn aonstraintj it is net always necasaary to compute both 

I-, i-nci ':i.   ■ as the following liluatraics., 1     ,1 

Theorem 2     Provided K 4^,  (i) if H. >0.  then w. ~ 0„ and (ii) .if 
'  ■    i        J    ' 

■r n 

J 

Lensna 5.. B-0,. 

„'0, w.' ~ 0: To prove this .m  first prove the following two lemmasc 

j-emma ^ If H f «=w,, than Q £ -l,. 

Lenrac,. 5 follows by recalling the definition ß ~thJ*} - b + p^ pZO 

(p luiepsr). and noting thai the simplex algorithm increases the value of 

b,, ^X'UOto.nical.'l'y so uhat b ' >,b,,, 
0 o ~ 0 

la LeKKa u,  "I! —a /b    foj' üoma subscript m other than i„    Jince 
ix   m 

^ - ndn ( a,/b, )  fox  -all k v i, y£ -H unless si == /u    But then H = a./b. -1/0 =■■*&. 

1o pi'ove  (i) of 'fheorea 2,. vis note that, since Hb.  « a. ^O, if W,    - 

c':ii;      c;/(Iil;.   -   ö.j^>U? than HB ■■  c > 0,     Thus -KB + c {ü^ and since 

0 
- T" ■'■'' and H.'O.  wD •■■ a "■•  --H8  r ;■ •'Q, from which w.    "- 0 follows at once..    The ■ j 

proof of (ii) prcvesda siinij.arly., It nay parenthetically be remarked that the 

provision !i f^'ui  Thsoren 2  is «.ore restrictive than necessary« Jince 

H ~ .i /b - i;u.n (..,, fb. )  for '•: f i, ¥.  ri;t'0implies a./b, -^for all k other 

tha.i k -' i and k ~ hi,  providad not both H, end b, squal 2.3rot Hence if then 

is an index r. for which a v 0,,  n 4 ra„ n 4 i, then a /b = a /b =:<i'<'. and 
n ' n   ri       nr   m ' 

tie subscript  ] cefined by   a./b, ^ )riin(-a,/'b, ) for all k, is nommique., 

hanc« w.    ~ 0 by i.'efault. 
J 
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The last remark defines the limit to which Theorem 2 may be strengthenecL 

It Is not true,, for example, that at Least one of w, or w, must be positive» 

-.f zero is the only permissible value for w. there is no guarantee that 

0 
w. will be any better. 
J 

In order to use Theorem 1 to derive a new origin vector w „ it is 

necessary to find, an acceptable rnlua for pn Wa note that (l) must be true 

for the integer solution vector w = w4^, and .;e obtain the defining equation 

(5) F* = w*b + b<r (bQ
1) 

if b and b, are taken from the initial tableau, it. can be seen that p* repre- 

sents the difference between the objective function value for the all integer 

solution (w*b + b ) and the objective function value for the solution with 

the simplex algorithm, (b," = w"b + b s w
! the simplex solution vector)» where 

tha latter has be-on rounded to its next highest integer;, While p* is the 

one strictly correct value for p, if H^O for all tha constraints for which 

w.^O;, the only danger is in choosing p too small-, since only then would the 

Q 
w. be .larger than implied by the correct value» The same is true of Q and 

0 
the w_. , Gnnversely, for H or W/Oj the risk is in choosing p too large. 

It is fortunitely possible» by being systematic,., to reduce both cases 

to one,, Gomory's algorithm, like the simplex algcrithr^produces a new ob- 

jective function value in place of tha original b« with each successive pivot,, 

for ajü? specified tableau obtained by Crornory's algorithm we will denote the 

current objective function value by Bnc 

The procedure is to begin with p ~ 0,;, determine the w. and w. and 

start Gomory's algorithja» There will be some cutoff value for B0 which, if 

transcended,; will indicate that the choice of p was unsafe and that the w, 

n 
anci w. need to ba revised» At this point p is incremented by an appropriate 

amount, the new w. and w. deteradned, and the process repeated» The process 
l     J 

can be formulated precisely as follows. 
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The NOT Procedure: 

(a) Ut  p0 - 0 

(b) Determine the new origin vector w on the basis of p = pn., 

(c) Determine the least integer P-, > Pn w^ch that assigning p the 

value p, will yield a different value for some conponant of 

w than by giving p the value p»,, 

(d) Apply Gomory's algorithm to the problem "minimiae wb + bn ' w b 

subject to wA£,c - w As w £; -w , "kliere b, b f. h,  and c are from 

the initital formulation (sea Formulation 1?  page 13)« 

(e) Let B„ represent the current objsctive function value taken from 

a specified tableau for the problem in Id)c    If, after any pivot,, 

B- ? \bn
,
/) + p, . give p0 the value p, and begin again at (b)t 

(f) If the condition in (e) is not satisfied, w was suitably chosen.. 

The objective function value ßn ~ b * and the values of the 

variables w. displayed in the final tableau to the problem in, 

(d) are the solution values for the standard problem "minimize 

wb + b subject to wA^c» w£.0o" 

r!e  remark first on tha second statement in if),,    Let w~ denote the all 

integer solution vector- to the problem in (d). Under the assumption that w 

is suitably chosg, we have shown that w ' + w la the all integer solutiom 

vector to the standard problem in (f).. The objective function value B = ta * 

given by the final Gomory tableau for the problom in (d) satisfies the equation 

b ■l- = w1!) + b + iPb  = (w + vj0)b + b,- and hence is the solution value for the 
0 0 J 

objective function to the problem in (f).. The effect of the constraints vl -w 

in the, initial Gomory tableau is to replace the zero vector beneath the -I 

matrix for the standard problem with the vector w » This "starts" each ws 

at w,.ü rather than at 0. so that the final w vector read from the tableau is 

iW-  \.0; rather than \i ,  as the second part of (f) claims 



19 

.v'e will now prove the validity of the MOT procedure with the following 

thaorem." 

Theorem 3.  Asaunte that the NOT procedure has been applied c::  specified above« 

(i) If B >U) V -t- p , then the strictly correct value of Pj p^Z P-, - 

(ii.l If b * 5.UJQ/ + P-jj then p0£ P*^?,, and b *■ is the correct objective 

function solution value« 

.Je first prove Theorem 3 undar ths hypothesis pnsp*.. 

To prove (i)s suppose p^ p, r By the defining equation (5) of p*s 

w*;b + b -(b0',\<p-5 and hence vr'^b + b <( Vn / + ^1'    Applying the 

hypothesis of (i) to this last equation we ^et 

(6)^b + b0(B0. 

0 
But if p,, •£. v* < D, f  then the choice of y, detennines the sairie w vector as p*^" 

0 "-   % • .L ' 0 

Tlierefore,. as we have remarked, Goirary's algorithm applied to the problem in 

(d) of the MOT  procedure must display the correct solution to the problem in 

(f) "in its final tableau.. Sines the algorithm incroasss the current objective 

function B,, rnonotonicallv with each pivot, Ii„£w*b + b-, contradicting (6), 
ü r      0      0 

Consequently p5^ p. , 

For i'ii) we nuppose p^ ^ p, „    Than from (5), w^b + b^ « \^A/>PI 

b,.> \b,'/+ p, .    % the hypothesis of (ii) this yields w^b + b  >b *„ and •;p'ü 

or  i.n other words the integer objective function value b * associated with a 

feasible solution (w T W"') to the problem in (f; is smaller than the minimum 

objective function value ^b ^ b , which ia iapossible., The conclusion 

p*5p, follows., 

To prove the second half of iii.)  we note that if PQSP*^?.,^ then p« 

Q 
detsrEdnes the jame v   vector as p^ and b * is the correct objective function 

value of (fjc On the other hand, if p* = p, , then by the same sequence of 

reasoning as in the preceding paragraph ÖQ*^. w^b + b0, and hence b^* = w*b + b08 

confinning that b * is. still the correct solution, and (ii) is true. 
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'.'.'he oomplets proof follows the preceding pattern inductiysly by starting 

as in the HOT procedure with pQ = 0. For this the hypothäöis p*7 pn la satisfied, 

and tha proof of (i) shows that P* >, Pn mus't continue to hold as long as the 

NOT procedura is itoraied according to instruction (e), 

The validity of the WOT procedure follows immediately from Theorem 3 

since r-.y (i) is is assured that the condition in (e) will not be satisfied 

unless the procedure can subsequently find' a value for p_ which will produce 

the sarüc w vector as p*j, and by (ii), it is assured that the procedure will 

stop with b *<■ equal to the correct objective function value, 

The question arises as to which simplex tableau (jives the best new 

origin  The final one seems a logical choice since in the iinmediata vicinity 

of the simplex solution the only variables which nnj.it have positive values 

will oe in the simplex basis,. As p grows larger, however, the possibility of 

new variables becoming implicitly nonzero will increase, In the actual tests 

raaue wii,h the NOT, both the initial and final tableau were used to generate 

C     0 
the w.  ...nd w , and the values compared,. 

It night hi-, fpsi f-.sd    that since each tableau implies the same solution set, 

(] o 
the values for the w. and w. would be the same regardless of which tableau 

i     J 

was selected for thsir derivation,, Interestingly enought this supposition is 

wrong , It is even possible to construct problems for which the values of 

seme ol the components of w are worse frora a later tableau than from an 

earlier one. A uniformity that does hold, however, is that for the constraint 

0     Ö 
used as pivot the i is\d j subscripts of w, J and  w. switch values, and the new 

w. equals the old w. , and vice versa-. The proof of this is given in Appendix Bo 

There is additionally the question of whether the NOT ought to be used 

to assign positive values to the slack variables. The argument against assigning 

values to the slacks is that this increases the requirements to be met by the 

nonslacks,  In consequence it becomes more Likely that too large a value for 

thf: objective function will be implied  On the other hand, positive .-.lack 
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values may speed up Qouiory'ü algorithm if they are nearly correct,, The 

qiifl.ition here tlss in cloasly with tha queation of the new origin technique 

and feasibility, soon to ba diecussed  Only practice can decide the matter., 

•and tests of the relative performance of the NOT under the two methods wera 

conducted as part of the experimentation procedure.. 

The NOI and Feasibility,--Problems exist for which the NOT is unable 

o 
:.o reach the mirda'ici solution,, usinc: permissibla values for the w. and 

w , vdthirs a reasonable number of pivots,, For some of these problems the 

HOT can be modified to find a solution which satisfies all the constraints,, 

even though it may not give the theoretical nd.nijnur.'i.  To accomplish this it 

is necessary 00 r«lax the restrictions on the permissible values of the 

0  ,  0 
w, and w . „ 
i     J 

.lixen  the objective function rsaches the cutoff level B ^{b y--- p^ 

which signals that p., was not safely chosen, instead of indicating a return 

to instruction (b) and a revision of ths w vector, the NOT procedure allows 

Gomory'a algcritimi to psrsist for a spscified number of surplus pivots. An. 

solution found vdlJ. bö feasible,, and can ba recorded.  Thereupon the NOT is 

set back on the course it would have followed if no digression had occurredo 

So long -is feasible solutions are permitted, it is expedient to go one 

step farther and allow the initial value of pn to be the negative quantity 0 

b, ■ (b '),. This effectively makes the first values for the components of 

0      ü 
w',, when w is derived with respect to the final tableau,, the same as the 

values of the variables in the simplex solution, rounded upward,. 

The bulk of the problems on which the pivot rul-8 and supplementary 

techniques were tested consisted of eight variables and eight inequalities. 

The objective function vector was randomly generated from the integers 1 

through 29.« and the absolute values of the coefficients of the constraint 



v.,;' .rtiii-ja  .-anda;;:.1..;/ generated with range 0 to 29-    Each entry in the A matrix 

üv ;f ■;'.•;  -  »•■••-•.■.tcsr ii J.VC3 ^i.".:;  to the notation of Porniulation 1.  page 14) was made 

•u.,;;.-iv: ..i.th J-'OOL:.!]." v ty ,?.    The x; solide ■• ■::; uo^ oi' ih-; c vector coEiponent^ 

vs.."!'':' -'aiit-caly bet .i^-;r-. 0 ^'id 59     ^'roblc-rra which turned out to have no fsasible 

,:H-'.J■:.:■;.•: hava beun ojuittea ivom the l'ü.llo/dnä diacunaicn» 

;-«c'.uu:; ti)-j i-CK'om fv/ot rule was used with the supplementary techni-aies,, 

ax.1- b'-JCai-U-.a lie::  ^cnvri;!.;; 'ivlar other pa vet rulea for the choice of the pivotal 

!.-i.Yi';'.r;;'.b!t v^eio brokan hj xndo:^ sele^tdt.nj, ae have tested each rula;' four 

' i.-ii:,' oi each problem bj f-lterinj- the random numler baue,    Tlie .firit negative 

:.! .iioji'-cr rule., which haa no random elairientj is of course excepted.. An upper 

'iK,:'f i'r.'.a apjlisd uniforTrly to all the rules »o that no problem was allowed 

io rar: for mere Ui&n .^OU pivots on a.rj trial., 

Fcr rut re::;3;- of coD.purtn^ the vxTforinances of tho rulösf  four consider 

ui-Zhii arv; relövant.     i-.rr;-.r ^d iu desoendijig order of iiaporteicej they are: 

l!   :.; , ;:i;;;:'x;;:- of dif...frs;'.it.   >5::'ubl,8?iiy that a rule aclved at least once.   (2) 

:■]•.> ioJ''-3']   :'':':i':H'   s.f  ;r;v c-i^'V;   :: jlut-icn at'ceiTipts.  ('3)  '..he nean and stairtiard 

d'i''iv.vlc-i :, f ch-\  ly i:..   ;ie-:.A..ived vo   ret u  'clut.tc^nj  (4) the mean and standard 

de;.'. .■.LiO-i :.f tho a-'roei (.? pi'rota r./vired to reach a solution. 

fa- la'.le... Vieri ■Icutti. on alxt.y-üi^i- problsms:  with decisiva results 

fr, 3;;it.s nf the sir.plicitv of tha probj-sris no ruis excöpt the NOT ^as able 

to sj'.'ö aver half a:' ifc;:a    The sveaai habt mle, tha Largest Üb,)octive 

Fli.actJ.on. t!.'i.a,e a.:!;;   auaae a ^fu; ?.y a;;Jv.,d  only y.% of the- 6;-5 problems  (47/5) 

at  lea:,I aaae.    Tha ^OT,, bj comparioon    aolved 52 problems 176%)..    By allowing 

fciäibla solutions aot nacttaarily ths r.c.m.imffi.. the ;x)v;ar of the NOT was ev 

va.viad furtherj  enabjir-.j it lu give aasi;cra  (not necessarily optl'nal) to 63 

.'i)t)  of ta-    pre alt a;:! 

Siji-av/J'or^.a   the cier :. :?;:'t3 a-   ''rala"  ali;L 
the SLiaplfTieatHry  tscanniras 

•ofer both to the pivot rules and t 



In contrHöt to the wide difference between the NOT and the Largeat 

Ocjecti-vs Function Ghaiige Iiule, the renainder of the rules differ frcm aach 

other by much smaller degreesj. the ranking along the four scales becomiaig 

lidxed: Interestirigly., the rules were very nearly unanimous concerning the 

problems they failed to aolvsn Exactly half, or 34 of the 68 problomsj, were 

unsolved by any of the rules other than the HOT, The 24 problems solved by 

the Random Boost ioile,,, which was the wor.vtj, were also solved by all the 

others, and. the 29 solved by the Ordinal Learning Rule included only two not 

among the 31 solved by the Kaximum Frequency Exigible Rule,, No other dig- 

crepancy was greator than this.. 

There were s;omewhat larger deviations among the totals of successful 

solution attempts, and reversals of ranking were not uncommon, While the 

Maximum Fioquency liLigible Rulg solved 2 problems more than the Ordinal 

Learning liulej, it had 8 fewer successful solution attempts* 

Table I simmarizes the information on the decision rules as they were 

applied to the. 68 problems a 

The data on means and standard dfcvi.-tiona of times and pivots required 

to obtain solutions nay sometimes appeal' to mt counter to expectation,, 

There are three reasons for this,, First, for those rules that require 

evaluation of all eligible columns before selecting the column to be used 

for pivoting., the number oi  columns eligible in a tableau will make a difference 

in the time required to carry out a complete pivoting operation;, thus causing 

the data for times to correspond inexactly to data on pivots., Second, times 

were recorded by the computer only to the nearest second„ M ans and deviations 

could be reduced, or increased according to the direction in which various 

times were rounded., Third, or most of the. rules, those problems which Gomorys 

algorithm was able to solve wore solved with a mean of from 30 to 35 pivots- 
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l'^ta.l,'.;; cO1/. or more of the succssaful solution attempts were accomplished in 

I.öfs U-'-*' ;t' pivctij. aivi rr.o ,t of the; rosfc in less th&a 60 pivots     However, about 

3$ to y% of the ■äiiGcessful solution atteKpta required 150 to 200 pivots»    The 

• Trational extr-^aa numbers of pivots have produced, standard deviations that 

seem uru-eafionably Idr^g     iJince the mean tiiaes were generally l/3 to l/4 of 

t,hi. i.'ifjwi pivots, the effect of extreme times wt.s not proportionately'so great 

an xnf.luenca on the 3tancW-rd deviations a^ the extrema nuniber of pivots.. 

Li., is alaa possibly of interest to note that thosa probleiaa which 

required c--re.r I'j'J pivots en one solution attempt were often solved in con- 

gisarab.ly .re-jer pivots en another attempt.-    As a rule!!, any problem solved 

'i4B.s äoive.i at least or.ca in 30 pivota er '".ess, 

■['.ue data foi  the uOT is divided Into throe parts in Table I.,    The firirt 

Cdrt,, deji^cated "l.'OT Feaeible,," roferj to all problems for which the NOT 

C'b'-uia'id <■■ ^clutioa.. whether or not the solution '.-i.-a optimal.  The second part,, 

afc.'sig.; ited i;'.jip]y 'Wfi " refers only zo ihose problems for which the NOT did 

ob'.a.u tii.o iv./tiri.al ;j\>j.uti'i;-j land ^av:- notice o.::' the fact)..    The thirds called 

'FOf ilc^vtrielcd," ret^r:; to the .'Jew Ori-gin Tocliaiqua restricted to the 34 

problsiia ■Jhich i-.ere ao.lved by at leü^t one of the other i'ules,    The data for 

tha tb.it: i s.art chevis  t-hat tja UQ! i'cwnd the problejns ao3.ved by the other rules 

anHiy th« ca.ü.-cr ores to ha.idle 

i'..  jhould be noted thai, the WO'J  was alvfaya used in the form that seeks 

t'ijisible solut.ions     licjice ths .ictfü-l nureber of pj.vols a.llotted to solving, for 

the thecreIdeal näniinuti was somewhat IüSü than i^l.    On the other iiand, the 

fignie?; foi' the nivotn are ;:;aaöd on the ."Uiiiber of pivots required by the NOT 

'■■■) a-ti-rij'  ■•ro corxtct    or bast) eo.'i.uti.-in the first time,  though the solution 

a.  ■•hat  p: ;.ut waf. '-«saibly only registered feasible;, 

'i..e!v:,:/, forxy and eighty surplus pivots were tested for the NOT in 

huriijUg: feasible solutions. with at the most a slight advantage to the eiglity 

djrpiud  livots mark       ;jn£, rtanon fos1 this saemr  to be that  the larger the 



vsluea for the new origins the more quickly a feasible solution was reached,, 

whether a good one or a bad one, 30 that earlier revision of the w. did not 
1 

produce either defect or advantage for small values of p„ Furthermoret 

Coniory'a al^orithfii often seerna to obey the principle whereby it either 

Dolvea a problem in a fairly ama].l number of pivots., or not at all^ AS 

aire.idy pointsd out, these problems that did require a fairly lar^e number 

of uivota on one solution attninpt v'ere usually solved in fewer pivots on the 

otiisr attempts 

The rtandom Restart Rule and the Random Eooct huJ.e were similarly tested 

■dhh upper cutoffs at 30., 50,, and 70 pivots, with no significant difference 

in räsults.:    For exampla^ using the 50 pivot cutoffs a problem solved on the 

first try in 45 pivots was generally Hatched, using the 30 pivot cutoff, by 

solving it on thy second try within 10 to 20 pivots« The Random Restart Rule 

sjsentailly multiplied the solution attempts of the uandcin 1 ivot Rule, adding 

further evidence that Gomory's algorithm by itself was not suited for the 34 

problems unsolved by any of the ruJ.es except the MOT.. 

MäiiiSSäi-JiS.'lHii'^. /üT the HOT^•—»The form in which the NOT was pro- 

gramined for the 08 problems referred to in Table 1 did not assign values to 

ths slack variables.. Thirty additional problems «era tested with the NOT, 

using an upper cutoff of 20Ü pivots and four solution attempts for each prob- 

lem, two fay assigning values to the slacks und two not. For these problems„ 

it appears that assigning values to the slacks which are close to their 

correct ones does not help the algorithm to reach a solution any more rapidlyc 

Titis implies that the algorithm would have comparable difficulties solving 

a problem for which the simplex gave an integer answer.. 

On four of the 30 additional prob]ems the use of alack assignments pre • 

vented the algorithm from reaching feasible solutions as good as those reached 

by the NOT In the form in which it ignored the slacks. On the other hands the 

NCT without slack assignments >vas always at least as good, both in terms of 
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solutions obtained and in pivots required to reach them, a.-3 the NOT which 

gives values to the slacks3 though generally there was no notable difference 

between the two« 

In addition to the study of slack assignmentfjj an examination was made 

of the comparative merits of the initial and final tableaus for producing new 

origins» Records kept of the new origin values obtained from the initial and 

final tableaus with the WOT indicate that the latter were generally far superior., 

as expected. Becau.e of this double con.putation of w , howeverj the times 

recorded for the KOT are slightly distorted. It should particularly be noted 

that the times for problems solved bj the NOT in ohly a fav; pivots may bs mis- 

leading since the evaluations made before the start of Gomory's algorithm 

are tho most extensive,, 

A record of the lower bounds established with the HOT did not always 

prove helpful in determining how large the deviation from the actual mirimum,; 

if it existed might be., In two cases the difference between a feasible solu- 

tion and the lower bound was reduced to less than fivej yet there was no 

indication that the minimum had been obtained,, At the opposite extreme, 

eight of the problems which .v'ere solved correcUy differed by as much as 

40^ from the lower bound ut the point where the correct solution was first 

signalled feasible... 

Table II has been designed to show the workings of the MOT in mo -3 

detail. The four problems referred to in the table arc not representat" ve, 

but were choso to illustrate some of tin* variation in the results obtabied 

by the WOTc The rows under each prob.le.n haading whew the pivots, the time, 

the values of the w, „ the solution values of the variables, ana the ob-je .t:'. v^ 

function value for each feasible solutian reached in succaaalon or, a given 

trial. The new 01-igins which huv« no tK-hir ■'.nfom-: tica rtoordod .;ith J:3:.H 

were not used successfully to reach a saLuti 01». 



One trial only ir. illu;vtratsd for problems 1 and 2,, while two trials 

.ire shown r.>r pvoblenu; 3 and .';..  KrcbLsn 2 is the only one of the four for 

vjhirh the i-JOT ebta'aied the r.iinrüniaji solution and recorded the fact,. The most 

we know of the solutions for the ot-her problems is that they are feasible,, 

The pivots for the NO? shown in Table II, unlike those for the NOT in 

Tables I and 1.1, do not include tbs pivots required initially by the simplex 

method. Thus in Problem 1 the new origin that was first obtained ^ava a 

feaaible solution väthout requiring any pivots with Goaiory'1 a algoritlun, 

Problem 1 is tntaraating on two additional counts, Wo solution obtained after 

tha first one was uble to iaijwovö on it. Moreoverj the algorithm devoted 

,300 pivots* to the foiu'tli new origin, and obtained nothing, though the 

difference betn/een this origin and the previous new origin was simply a unit 

0 
reduction in the value of w. 

The first new origin or, Problem 2 did not givo a feasible solutionp and 

it took S surplus pivots to find one- The second origin was not only feasible,, 

but turned out to be the :n;Lni.':;'im solution, though this was not verified until 

tha answer had been gotten twice wore.,, ^,5 pivots later, 

Problem 3 demonatratesä two nore of the eccentricities of the NOT,, Here 

ths point of interest is in the difference between the results of the two solu- 

tion trials.-, Tht; beat answer ofataunsd in both trials was the same,, and each 

Q 
of the w.* ior tills solution was greater than or equal to the w. of the new 

x i 

origin which produced it,. The fir:.;t solution obtained on the second trials 

hoveirerj was batter than the corresponding one of the first trial,, thouch both 

were based on the aame origin- The superior solution was obtained in fewer 

pivots and has the novel property that one of the variables which was given 

a aonzero value in the new origin was t'.ero in the final answer. 

he simplex method required 4 pivots on this problem,. 
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In Problem A the second trial a^j-eea with the first on three of the 

feasible solutions,, but registers one additional solutions which turns out fco 

be the best one found. Tins solutions like the firat one obtained in the 

second trial of Problem 3,  was based on a new origin that could not safely 

have been relied upon to produce it. Nonetheless, none of the thsoretically 

safe origins .vere successful in producing the solution on either trial,, .5uch 

results suggest that a study of pivot sequencing for the NOT might prove 

more fruitful than for Gomory:' a algorithm aiono .- 

Finally, a word about the NOT applied to problems of a larger size.. 

.«e have received five problems from Ralph Gouory, Kid have tested the NCT arid 

the lia.'idoci ituie on four of them in the swte  way as the roles were tested on 

the eight variable eight inequality problems,, ('.hi  currently do not have 

enough computer memory space to handle the fifth problem«) The Random Rule 

was unsuccessful in solving any of the four problems using the 400 pivot 

cutoff and making four solution attempts at each problem- The HOT obtained 

feasible solutions to three, though we cent know whether these solutions arö 

optimal,, 

The results of the KOT on these, problems are itemised in Table ILL, 

..e suggest., ho.vever, that the NOT''s performance on large problems .In gensral 

may be somewhat different than for the . robloms used here,,. The reason 1:; Lh.^t 

the solutions which the NOT found were obtained by rounding the variab.;.es fro;: 

the simp.lox tableaus upwards The structure of the problams makes it appjar 

thac the feasible solutions are good, but for ii-a  adequate test of the # T, 

problems with optimal solutions substantially removed from any obiaimxi by- 

upward rounding should be tried , 



TABLE I 

prub.leias 
|5olvcd At 
Geast On,e 
(Tote?  of 
pß problsis 

N0 I 

(a} 

So'u^ion 
Tr es f4 

pr^blasis 

tola1- i 

Nr.   ( % of     Kaan - 

(4) 
F.f.TO>3 

"■"V 

1.i.p",-oxinü\vü 
Eanhings of 
the Rules by 
ths 4 Criteria 

D     Nean   oO 

 i  
prob- 
lesas 
In 

. „....JsaaAiLls! I ^„L i__J__™ 
A,    NOT Isa  (  /6 ^ i^Sj 9^ 2   I   9,23 

"^■:"" T"' 
Li:J,S,93.„.L..A, §0. 

| :■  0 I 8n, ?   \    ^ A-.., 

„™„L..„.. L 
13   ',^ 90   1? 

'"■ y  

\ 

35 -'■[ i 

" T 

:,Q/i , A ■'.■r)!22, '-'M'? 

'41 

! 

C  '"cirdinsi f ' "t         '  f   " '"r""" 
 ^ J,esxn?n(;. B'   I,JiP..A.... 

,5     Eandoa      | 
 „Rule  J3,, J..45. 6_ 
f-     Kax I      j 

Orc.;nG;     1       i 

B     Flrsf'        j       I 

Tnake 1 
*;9r*:,"'.  426 ii«.,?™. 

9      MC')' l0'.    j 36 tf 
"^'"'Raridoin "1       \"  " 

BOPS t 

i 
02 I S2 3 _ [   7. 92 j i_2 ■ 5;: p4:,.,i4,43^": 

!        ! 
T r 
j   6,88n . ,9"'i29.96 .'.V -■ 

1   Q3 I 7^ 0   I    6, , 4.„;:,..;Ülii;01 

IP   i     !     8 

,J„, 

5      < 

1      s 
... j „J.ai'iijJ .v.?,i3.{>,3.il'i?..^ lit 

Rti.]«a" :ir...L:i ■! ; I,  f^ 'i 8 03;:2?; Uh-i 6'> ...LJ 
E-.gh^j   jil: p.'iw iJ,*-.u'ti wan a).'-'W*d ; he f'Oi'  'n \ia   ; •:ir,a,5p;.  to f nd a ♦>;:.?■: b'^ 

■lO'c'Hm j/iV'h v;>..3 pens b'y no' ojAU:^      An? &i.i'"p',ue P'
,
"M;: us-'-d,  h'.>^x^>:, 

re&\ -"a by the P-W?  mo ■J';'   ■''i-' ::'->'  tviEbei:  of piV'tn g"1,ry.-.'.-jd b;-.:";'r-   t-h^   ^^'■ 
p    ■'   ■■..! •■:i■;■ was   ^^ch'-l 
' :-    Th« ',ipp=-* "■Uijf«   r;v.- pf.'iit.j with 1 i;e Randr-H ;(^sr.c. r  /'u'1 e arvi 3a.ndo3; Doof 

lr-i e was 
y:0l'.f   :•■- 

"!■:;      TV .'i 

f, v '>n ':■ :;Mi suh.'-fi-at.ion   vr«h ■ hs (j.00 p«1^1   priiv-.pn 
■;inj.:»i  -3 a r.."?.ii~ of '•'■,l' ^-)lT.-')-f *hn rv'^'"-* '^^ '""■'','.'■■'■^,. ■'' ■''cr..:1'; 



30 

TABLE n' 

Problems Ti f.ustrating VaMaU.ons 'n. las Bahavdar of fchs NOT 

—.  

Prob'. Has       PUo'.s 

P«* v>)'g3i 

Problem 2  j      8 
8 

I     i9 

Problem 31    "^ 
Trial  ,   |     n 

i. ^m 
[ se ? . 
onds) 

Nfw Or.^ln Values of 
VsriabJas 

0     0      ")     0     0     0     0     ( 
w     H     v/     w     w     w     w     w 

0    o 

0 
0 
0 
0 
2 
2 
2 

0 
0 
0 ._,„ 

4 

?:■ 

Trla'. 3 S 

Pr^b? CT. i s 
Ires.;,   i 

Tr;&]  3 

i     8 

i 0 
i 0 
I 0 
.1. o. 
I o 
i0 
I n 
I 0 

1  ^ 

1  ^ 

0 2 
0 

0 ? 
0 '. 
0 ! 
0 0 

0 
0 
Q 

QL 
0 
0 
0 
0 

"3 " 

2      1 
0 
0 9 

0 2 
o 2 
0 2 
0 ?, 
;•> 2 
n ? 
o 2 

"o 
o 

n 

o 
o 

o 

0 

i 
-) 

f\ 

D 
1 

r 
f: ,?, 
0 0 
A 0 
n o 
n o 
r-; 0 
o rj 

f) g 
0 o 
r, n 

Va'Juaa of Vartablee 
Ob;- 

t-E.on 

w     »■■' VJ       w If 

p 0 
7 0 
"} 0 

n "T 
0 a 
0 2 
0 << 

n 

0     0 n c 
n    o 0 ■^ 

0      0 0 o 

o   :;r ""Tf" ■~o~' 
,...,. 

0     0 0 0  ' 
Q     0 0 f") ■J 

0     0 0 ft * 

h    o « r, 

4     - n 
*> 

0      i 

D     6     '! 

O      5      S 

n 

'he pv.rol   ■■atoff 'liia1: 

!d w:tn tiü.s ~aw G;C not ■ oai a fc ■ib« no'u1 



Xl 

P r-obI«a 

¥&Habl*s InequaliiJes ?)~tr.p}sx Solution 

LI 

l \ r 

rv 

TABU
5
; (i?: 

Ths KOT Äpp.liad i-a Gom-v'-ys Problems 

Problem S.Va» :; Objöi:ts.*'e Fm^'iion 

NOT KsaS'.-bls Soli 

- v : ! 29 

-n 

SO 

: o 

\ 

5,$33 

^ 

'*   Th« KO^ obtB.,;n«id no tm^Qje aol-itlcn, but ga i ?0 "4; <"3 a "mt^ bo'and 
opMiaa?. ,5n^ cger aoi'-v-ion 



/!?. i2 of ^te^PygyeS).   Rä.ninazK wb -I ?A s^bjs^t to wü > s, w > 0y w Integer 

>i lae above notation v? sr.i   ' are row rectorSj. b end ' ar« coltwin vectrors, 

b.   ;t; ■' s-:aliru and A "'s a a3.ir.b-.  all of Aich are entirely integer! and of 

ciarw,;..!:;OTI:I su-h "ba't  Uie pvot'Un '-a w-^ll dsf'»nest- 

ing .-a'J.   "abieau 

[_.«,,. ■.. d.«nota th« "tahle-j« aK'■l"■:-x,!, termed by annexing the col-mn rsetor 

li "o ih« lef-  of    A ami    I,   a«  hi 'he upper potion of the tableau abov«,. 

"oi" ni.r subsequ^iv" tabiea-J T w;!l'  conttrm''- to d^iote fch« aatrsjt found in the 

.jSEve  '-c-i-lor.     I ■■' 'V    ts'orssiftnt :'';e ^eitpr ror^aspondlng to the i th row of T 

tjj T,<T, W'v; wii.'I; )i';.-iäi ä-hs^ 1%   'a 'ex c■«graphical;»y ^©ss than T. - 

Gra-'srys al^-r- ^ a-5g.v^es 'iha'i- ?.>'■' (IwJ■.rographifally^  for &il \ {if. 

'AiTf a.-e m'--..  a RKUS.VC! tar-ülv? fo^ mailing uheci ■s^)-    Th« algofflthm ^a called 

:h^ ati   integ'n- ««frh^d bcauas sV;  eosff'-Ciants m the tableau /-ema^n integer 

'Ur':'ng the ent-lr«  *a3 .ulalion given -hat «he «ntr'ea In the Initial tablea« 

ws'-o ;nfcegsr;-j 

Fo-r skip? V'  -y   .71 z-': x':'t \^ Oo'uory1 ;5 algorithm in the diagram i^iieh 

/ol-ovf.?, let th« luatrix init >.a"ijy conajs^Jng of   A arid    I be d^notsd simply 

by A    and b?.-. thr v- .:o"   n^i   il'y cor.3racing of   >■ and 0 be danotsd by c 

Aga. n,   ?n subfaeqa^n*:  tabJeaus,   A and  « wiU  denote the matrix and vector 

found  'n f.ho  ^a-cn1-.  l.caatitins aa 'ho original   A and « 
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DIAGRAM FOR GOMORPS ALGORITHM 
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e     Is 
.«APi ^o  for S0!31^  tl' #M^ ^  

E'ile.-.T- a negative indlsato'i 
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1
 foliann 
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aiA 

vvi'.erc ?<..    ■0 if,//.   ;   co ,  ajui then x 1 
find 

i 

Computadion Is 
r-Tidfld„    Anawar ia 
display fid in tableau 

For ea-;h ( («xc'fpt T^ add i: 
tl'jws the Ith row of the new 
tablea.i to the ith row of old 
if-iwlea'-..    Enter resuU '.n i<h 
r-<w of now tablea*. 

Ente.r the Ith row of the rJ i 
iaK"aau *ii i'he Ith row of 
';be new tablsau,-, 

I Ca''-!  row f t-hs P';.;f£feaL TSK 
I and d-j- S-he pvyoCTote "iyiT 
| 13 a rnaxda m valua for aT; 

I ';  ci'h -Hjat dvO,   and tha1: 

A 

jEnter new colusn in tableaa. ; 
I It will have a negative iai: ! 
. cator.    Call the new column j 
i the new pivotul column,. 

Fcr all i, ccanpute ths neu 
cclu.'/in as 

d.  = [a^A] 

d   - [CJ/ä] 

If   fi, Vi for all i (when G <D). the x o "' J 
T>nK' o;n   V>r. l1-,.t-l' 

■■* The objective function valua (nsgatlvelv signed) appetirs in the 
location initially occunied by  b , c-nd 11 o  aolutiou vector w 

appsdrs in the partition of th? botto--. ?■:.-•,■ i rH]-d V,' •■ '.;r'.c'' ■■ 
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AProiDIXJ 

Theorea /+,  Let 2w, a, ••■ e represent the constraint chosen for pivot 

from a simplex tableau. T, Lot the "prime" superscript (') denote values 

pertaining to the tableau T- derived from ' by the pivot operation5 for 

example, £w, a, t, '« c5 rafers to the pivotal constraint from T as it 

appears, in T;., Finally^ .let w. end w. denote the coraponents of v   derived 

from the pivotal constraint in T, and let ('•;...)' and (w.j)5 denote the 

0 ccapönents of w obtained 1'ran the s-im  constraint 8 3 it appears in T . 

Then i ~ j', j - i3. and w. » (*,.,}% 
0  .■ 0 

j"" ' j 
, H i« 

Proof: To ahew this it is necessary first to show that if a /b <a /b 
— '   m' K- n' n 

for the pivotal constraint, then a ,/b <~i  ./b , after tha pivot,, 
m'    ffl ~   U"   n 

This implies in particular that j,; - i,. The slmplsx algorithm defines 

ak, -> aj>i 8r.d bk, =. b^ ■■ b^/a^, where a.^ ^ ndnCy^) for ak<0.. 

T}!e G!ibacript i. it ohould be noted, is defined tha sasie for the pivot 

element a. and the new origin value w. of Theortsi ..: for any constraint 

which is eligible for pivoting.    We then ITAJ- write 

Inspection of this latter foni ohowa the assertion of oraer preservatio.) 

to ce valid-,    Thus j"  « 1, 

'.ve now observe that 

fp - -a /b „ v.-hsra -a ../b ,  ^ .irlr^-a, .,/b. ,).. k >- i, 
r1' r'      i"'  r1,      V ic'   ' 

Rearranging (?) once again, Q- may be written ns 

O1' - (a /b J/((a/^ ^b, ■ a.) - F/iHb, ■ a. 1 
t' r ■  r .r i  i      i  1 
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with r erubstituted for k, 

sini.pl foe: 

'■■Ja v.se the folioving rei&ti.ons .a"-o:a the 

c/a,? a. 
'  i     3 

B' cb./V b 
1       A 

Then 

(ß B' ^ cO/^'b^, -•• ai:) » Ufl^:ih.      ^i ^ —^ 

(103 - ci/f!^ - a^} 

(c/aj(   ■.::::>.) 
t T"" 

1 

from rfhj.ch it fOIIOHS that (w, ) W.        -; iho ids-tLty (w,,) 

is; obtained in a ;lke fashioa« 
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